Invariant Object Recognition Using Circular Pairwise Convolutional Networks
نویسندگان
چکیده
Invariant object recognition has been one of the most rewarding are of research in computer vision as there are many applications need the capability of recognizing objects of interest in various environments. However, there is no single technique which claims to achieve the goal in all possible conditions and domains. Out of many techniques, convolutional network has proved to be a good candidate in this area. Given large numbers of training samples of objects under various variation aspects such as lighting, pose, background, etc., convolutional network can learn to extract invariant features by itself. This comes with the price of lengthy training time. Hence, we propose a circular pairwise classification technique to shorten the training time. We compared the recognition accuracy and training time complexity between our approach and a benchmark generic object recognizer LeNet7 which is a monolithic convolutional network.
منابع مشابه
A Novel Approach to Improve the Training Time of Convolutional Networks for Object Recognition
Convolutional neural network is a kind of multi-layered neural network which facilitates the feature extraction and input-output mapping together with a global learning algorithm. The built-in trainable feature extractor of convolutional networks makes it a good candidate for endto-end object recognition problem. In addition, the trainable feature extractor is adaptable to different problem dom...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006